Correlation between electron localization and metal ion mutagenicity in DNA synthesis from QM/MM calculations.
نویسندگان
چکیده
DNA polymerases require two divalent metal ions in the active site for catalysis. Mg(2+) has been confirmed to be the most probable cation utilized by most polymerases in vivo. Other metal ions are either potent mutagens or inhibitors. We used structural and topological analyses based on ab initio QM/MM calculations to study human DNA polymerase λ (Polλ) with different metals in the active site. Our results indicate a slightly longer O3'-Pα distance (∼3.6 Å) for most inhibitor cations compared to the natural and mutagenic metals (∼3.3-3.4 Å). Optimization with a larger basis set for the previously reported transition state (TS) structures (Cisneros et al., DNA Repair, 2008, 7, 1824.) gives barriers of 17.4 kcal mol(-1) and 15.1 kcal mol(-1) for the Mg(2+) and Mn(2+) catalyzed reactions respectively. Relying on the key relation between the topological signature of a metal cation and its selectivity within biological systems (de Courcy et al., J. Chem. Theor. Comput., 2010, 6, 1048.) we have performed electron localization function (ELF) topological analyses. These analyses show that all inhibitor and mutagenic metals considered, except Na(+), present a "split" of the outer-shell density of the metal. This "splitting" is not observed for the non-mutagenic Mg(2+) metal. Population and multipole analyses on the ELF basins reveal that the electronic dipolar and quadrupolar polarization is significantly different with Mg(2+) compared to all other cations. Our results shed light at the atomic level on the subtle differences between Mg(2+), mutagenic, and inhibitor metals in DNA polymerases. These results provide a correlation between the electronic distribution of the cations in the active site and the possible consequences on DNA synthesis.
منابع مشابه
Ortho-phenylenediamine Based Bis-ureas as the Ion Selective Sensors; A QM/MD Study
Density functional theory dispersion corrected (DFT-D3)calculations and molecular dynamic (MD) simulation were applied to investigate the sensing ability of four types of receptors (RCs) composed of the ortho-phenylenediamine based bis-ureas for selective complexation with the anions such as Cl–, Br–, OAC–, PhCO2–, H2PO4– and HSO4– in the gas phase and DMSO. On the basis of the data obtained fr...
متن کاملTo study antimicrobial and metal ion potential of Silver nanoparticles synthesized from Zingiber officinale using different solvents by EDS & TEM
Nanotechnology is new form of technology which has produced a great development in variousfields. Nanoparticles are of the great scientific interest as they are effectively a bridge between bulk material and atomic & molecular structures. Nanoparticles are the particle that have size 1 to 100 nm and possess due to large surface area to volume ratio & smaller size. Different types of nanom...
متن کاملA QM/MM refinement of an experimental DNA structure with metal-mediated base pairs.
A series of hybrid quantum mechanical/molecular mechanical (QM/MM) calculations was performed on models of a DNA duplex with artificial silver(I)-mediated imidazole base pairs. The optimized structures were compared to the original experimental NMR structure (Nat. Chem. 2 (2010) 229-234). The metal⋯metal distances are significantly shorter (~0.5Å) in the QM/MM model than in the original NMR str...
متن کاملA QM/MM study of the binding of RAPTA ligands to cathepsin B
We have carried out quantum mechanical (QM) and QM/MM (combined QM and molecular mechanics) calculations, as well as molecular dynamics (MD) simulations to study the binding of a series of six RAPTA (Ru(II)-arene-1,3,5-triaza-7-phosphatricyclo-[3.3.1.1] decane) complexes with different arene substituents to cathepsin B. The recently developed QM/MM-PBSA approach (QM/MM combined with Poisson-Bol...
متن کاملA double-QM/MM method for investigating donor-acceptor electron-transfer reactions in solution.
We developed a double-quantum mechanical/molecular mechanical (d-QM/MM) method for investigation of full outer-sphere electron transfer (ET) processes between a donor and an acceptor (DA) in condensed matter. In the d-QM/MM method, which employs the novel concept of multiple QM regions, one can easily specify the number of electrons, spin states and appropriate exchange-correlation treatment in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 23 شماره
صفحات -
تاریخ انتشار 2011